Linear regression attempts to model the relationship between two variables by fitting a linear equation to observed data. You can read more about what is regression and type of regression and about linear regression

Generally, you wont be using TensorFlow for problems like Linear regression, It can be best addressed by skitlearn, scipy libraries, however this is great starting point to understand TensorFlow.

Here is the code

```
################################################################################################
# name: TensorFlow_Linear_Regression_01.py
# desc: Linear Regression using TensorFlow
# date: 2019-02-03
# Author: conquistadorjd
################################################################################################
import tensorflow as tf
import numpy as np
from matplotlib import pyplot as plt
print('*** Program Started ***')
########## Input Data Creation
n = 20
x = np.arange(-n/2,n/2,1,dtype=np.float64)
m_real = np.random.uniform(0.8,0.9,(n,))
b_real = np.random.uniform(5,10,(n,))
print('m_real', type(m_real[0]))
y = x*m_real +b_real
########## Variables definition
m = tf.Variable(np.random.uniform(5,15,(1,)))
b = tf.Variable(np.random.uniform(5,15,(1,)))
########## display inout data and datatypes
print('x', x, type(x), type(x[0]))
print('y', y, type(y), type(y[0]))
print('m', m, type(m))
print('b', b, type(b))
########## Plot input to see the data
# plt.scatter(x,y,s=None, marker='o',color='g',edgecolors='g',alpha=0.9,label="Linear Relation")
# plt.grid(color='black', linestyle='--', linewidth=0.5,markevery=int)
# plt.legend(loc=2)
# plt.axis('scaled')
# plt.show()
########## Compute model and loss
model = tf.add(tf.multiply(x,m), b)
loss = tf.reduce_mean(tf.pow(model - y, 2))
########## Use following model if you get TypeError
# model = tf.add(tf.multiply(x, tf.cast(m, tf.float64)), tf.cast(b, tf.float64))
# loss = tf.reduce_mean(tf.pow(model - tf.cast(y, tf.float64), 2))
###########################################################################################
# Create optimizer
learn_rate = 0.01 # you can use 0.1/0.01/0.001 to test the output
num_epochs = 500 # Test output accuracy for different epochs
num_batches = n
optimizer = tf.train.GradientDescentOptimizer(learn_rate).minimize(loss)
########## Initialize variables
init = tf.global_variables_initializer()
########## Launch session
with tf.Session() as sess:
sess.run(init)
print('*** Initialize')
########## This is where training happens
for epoch in range(num_epochs):
for batch in range(num_batches):
sess.run(optimizer)
########## Display and plot results
print('m = ', sess.run(m))
print('b = ', sess.run(b))
x1 = np.linspace(-10,10,50)
y1 = sess.run(m)*x1+sess.run(b)
plt.scatter(x,y,s=None, marker='o',color='g',edgecolors='g',alpha=0.9,label="Linear Relation")
plt.grid(color='black', linestyle='--', linewidth=0.5,markevery=int)
plt.legend(loc=2)
plt.axis('scaled')
plt.plot(x1, y1, 'r')
plt.savefig('TensorFlow_Linear_Regression_01.png')
plt.show()
print('*** Program ended ***')
```

You can change the input and see the output. If you get NaN value in TensorFlow output, please change 0.01 to 0.001 in following line

optimizer = tf.train.GradientDescentOptimizer(0.01)

Here is the output

*** Program Started *** m_real <class 'numpy.float64'> x [-10. -9. -8. -7. -6. -5. -4. -3. -2. -1. 0. 1. 2. 3. 4. 5. 6. 7. 8. 9.] <class 'numpy.ndarray'> <class 'numpy.float64'> y [-0.12267011 1.99923466 -1.82417449 3.70960816 -0.07838254 2.49865561 6.01521568 4.72467689 4.26350466 6.29306134 6.56424532 6.37343995 9.1530143 9.99292287 13.1932482 9.23547055 11.28963328 12.00597972 14.64760425 14.58158682] <class 'numpy.ndarray'> <class 'numpy.float64'> m <tf.Variable 'Variable:0' shape=(1,) dtype=float64_ref> <class 'tensorflow.python.ops.variables.RefVariable'> b <tf.Variable 'Variable_1:0' shape=(1,) dtype=float64_ref> <class 'tensorflow.python.ops.variables.RefVariable'> 2019-02-03 16:10:20.898092: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA *** Initialize m = [0.79374898] b = [7.12266825] *** Program ended ***

You can ignore the line “2019-02-03 16:10:20.898092: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA ” We will discuss about it later.