NumPy is BSD licensed fundamental package for scientific computing with Python. Most important feature is a powerful N-dimensional array object and sophisticated (broadcasting) functions. It also has useful linear algebra, Fourier transform, and random number capabilities

NumPy can also be used as an efficient multi-dimensional container of generic data. One of the most important feature is Arbitrary data-types.

Importing numpy and creating, accessing and modifying array

>>> import numpy as np
>>> a=np.array([1,2,3,4,5,6])
>>> a
array([1, 2, 3, 4, 5, 6])
>>> type(a)
<class 'numpy.ndarray'>
>>> a[1]
2
>>> a[1]=9
>>> a
array([1, 9, 3, 4, 5, 6])
>>> b = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])
>>> b
array([[ 1, 2, 3, 4],
[ 5, 6, 7, 8],
[ 9, 10, 11, 12]])

Numpy Properties

>>> a.shape
(6,)
>>> b.shape
(3, 4)
>>> a.size
6
>>> b.size
12
>>> a.data
<memory at 0x7faf92bb0dc8>
>>> b.data
<memory at 0x7faf92bbba68>
>>> a.dtype
dtype('int64')
>>> b.dtype
dtype('int64')

Mathematical operations on numpy numpyarray

>>> a
array([1, 2, 3, 4, 5, 6])
>>> b
array([[ 1, 2, 3, 4],
[ 5, 6, 7, 8],
[ 9, 10, 11, 12]])
>>> c
array([ 3, 6, 9, 12, 15, 18])
>>> a+c
array([ 4, 8, 12, 16, 20, 24])
>>> a-c
array([ -2, -4, -6, -8, -10, -12])
>>> a*c
array([ 3, 12, 27, 48, 75, 108])
>>> a/c
array([0.33333333, 0.33333333, 0.33333333, 0.33333333, 0.33333333,
0.33333333])
>>> np.sqrt(a)
array([1. , 1.41421356, 1.73205081, 2. , 2.23606798,
2.44948974])
>>> np.sum(b,axis=0)
array([15, 18, 21, 24])
>>> np.sum(b,axis=1)
array([10, 26, 42])
>>> b
array([[ 1, 2, 3, 4],
[ 5, 6, 7, 8],
[ 9, 10, 11, 12]])
>>> b.T
array([[ 1, 5, 9],
[ 2, 6, 10],
[ 3, 7, 11],
[ 4, 8, 12]])

Working on the arrays

>>> b
array([[ 1, 2, 3, 4],
[ 5, 6, 7, 8],
[ 9, 10, 11, 12]])
>>> b.reshape(4,3)
array([[ 1, 2, 3],
[ 4, 5, 6],
[ 7, 8, 9],
[10, 11, 12]])
>>> b
array([[ 1, 2, 3, 4],
[ 5, 6, 7, 8],
[ 9, 10, 11, 12]])
>>> b.resize(4,3)
>>> b
array([[ 1, 2, 3],
[ 4, 5, 6],
[ 7, 8, 9],
[10, 11, 12]])
>>> b[0:2,1:2] #[row range,column range]
array([[2],
[5]])